Dedicated to Professor Dietrich Döpp on the occasion of his 65th birthday

Reactions of $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted hydrazine-1,2-carbothioamides $\mathbf{8 a}-\mathrm{c}$ and substituted N, N "-ethane-1,2diylbis(thioureas) 9a-c with 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil, 10a) and 2,3,5,6-tetrabromo-1,4-benzoquinone (bromanil, 10b) to form N, N-disubstituted 1,3,4-thiadiazole-2,5-diamines 11a-c, substituted 3-amino-6,7-dichloro-2,3-dihydro-1H-4,2,1-benzothiadiazine-5,8-diones 12a-c, 2,3,7,8-tetrahalo-thianthrene-1,4,6,9-tetrones 13a,b, substituted 5,6,8-trihalo-7-oxo-3,7-dihydroquinoxaline- 2 H -carbothioamides 14a-c, 15a-c and 7 -substituted imino-1,3,6-thiadiazepane-2-thiones 16a-c are reported.
J. Heterocyclic Chem., 43, 471 (2006).

Introduction.
Addition of nitrogen nucleophiles to benzo-, and naphthoquinones represents a common synthetic route to many dyestuffs and medicinals [1-13]. The reactions of 2,3-dichloro-1,4-naphthoquinone (1) with thioacetamide or with thiourea to give 2-methyl- and 2-amino-2,3-dihydronaphtho[2,3- d]thiazole-4,9-diones $\mathbf{3}$ and 4, as well as the synthesis of bisthiazole $\mathbf{7}$ from $\mathbf{1}$ and dithiooxamide were first reported by Hammam et al. [14]. They claimed that also the intermediate, 2-thioamido-3-chloro-1,4-naphthoquinones 5 and 6 were isolated from the reaction medium and could be separately transformed to thiazoles by boiling in aqueous ethanol containing sodium bicarbonate. Later, this work was repeated by Katritzky et al. $[15,16]$ and, in agreement with the earlier work, they found that 1 reacted with a variety of thioamides in dimethylformamide or in dimethylsulfoxide in the presence of triethylamine yielding the corresponding thiazoles $\mathbf{3}$ and $\mathbf{4}$, and with dithiooxamides to form the bisthiazole 7.
Matsuoka and co-workers [17-19] subsequently claimed that the previous work was in error and the reactions of $\mathbf{1}$ with thioacetamide, thiourea and dithiooxamide all gave the same product, namely dibenzo $[b, i]$ thianthrene-5,7,12,14-tetrone (2) but not the thiazoles $\mathbf{3}, 4$ and 7.

In view of these discrepancies, Katritzky and co-workers subsequently reexamined some of those reactions [20]. Although the product isolated by Matsuoka et al. was indeed formed, in all cases the 1,4-dithiine was accompanied by the corresponding 1,3-thiazole, although in some cases product separation was difficult.

Several authors have investigated under various conditions the heterocyclization of compounds having an extended urea-like chain such as 1,4 - and 2,4 -disubstituted thiosemicarbazides [21-23], 1-substituted-3-thiosemicarbazides [24], 1-acylbithiourea [25], 1,6-disubstituted-2,5dithiobiureas [26], 1-aryl/alkyl-2-thiobiureas [27] and thiocarbohydrazides [28]. We report herein the results of our recent investigations on the reactions of symmetrical hydrazine-1,2-dicarbothioamide as well as $N, N^{\prime \prime}$-ethane-1,2-diylbis(thiourea) derivatives with both chloranil (10a) and bromanil (10b).

Results and Discussion.
On adding tetrahydrofuran (THF) solutions of 8a-c (2 equivalents) to solutions of $\mathbf{1 0 a}, \mathbf{b}$ in the same solvent, the appearance of a green colour, which gradually changed to blue was observed. When the reaction was monitored spectrophotometrically (at $10{ }^{\circ} \mathrm{C}$), an absorption maximum was observed in the visible region at 536-508 nm that was assigned to the formation of an unstable charge-trans-

Scheme 1

7
fer complex (CTC), since neither the thiourea derivatives 8a-c nor 10a,b absorb alone in this region. After standing for 48 hours at room temperature, 2,3,7,8-tetrahalothi-anthrene-1,4,6,9-tetrones 13a,b were precipitated as the major products (41-44 \%). From the filtrate the substituted 3-amino-6,7-dichloro-2,3-dihydro-1 $\mathrm{H}-4,1,2$-benzothiadi-azine-5,8-diones 12a-c (22-28 \%), together with 2,5-disubstituted 1,3,4-thiadiazoles-2,5-diamines 11a-c (12-15 \%) were isolated by preparative thin layer chromatography from the reaction of 8a-c with $\mathbf{1 0 a}$. On the other hand, the filtrate from the reaction between 8a-c and 10b contains compound 11a-c (21-26\%).

As an example, the structural assignment of 12a was supported by the following spectral data. In its ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum, the characteristic resonance signal of the carbonyl carbon atoms of chloranil (10a) appeared at $\delta=$ $170.2,171.4 \mathrm{ppm}[29]$. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{1 2 a}$ showed two broad signals at 8.68 and 7.80 ppm , due to the NH attached to the phenyl ring and the thiadiazine-NH, respectively, in addition to the phenyl protons. The ir spectrum of 12a (KBr disk) showed sharp bands at 3330, 3270 and $1680 \mathrm{~cm}^{-1}$ for the secondary amino and carbonyl groups respectively. The thianthrenetetrones 13a,b exhibited absorptions at $1700-1695 \mathrm{~cm}^{-1}$ for the quinone carbonyl groups. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of $\mathbf{1 3 a}, \mathbf{b}$ showed absorption signals around $171.4-170.9 \mathrm{ppm}$ for the chloranil or bromanil carbonyl carbon atoms. The formation of 13a,b was further confirmed by mass spectrometry. Besides the molecular ions at $416 / 412$ or $594 / 590$, the characteristic fragment ion patterns of the substituted tetrahalo compounds were observed [30].

Chart 1

10: $\mathbf{a}, \mathrm{X}=\mathrm{Cl}$

11

12
b, $\mathrm{X}=\mathrm{Br}$

16
13: $\mathbf{a}, \mathrm{X}=\mathrm{Cl}$
b, $\mathrm{X}=\mathrm{Br}$
14: $\mathrm{X}=\mathrm{Cl}$
15: $\mathrm{X}=\mathrm{Br}$

8, 9, 11-12, 14-16: $\mathbf{a}, \mathrm{R}=\mathrm{Ph} ; \mathbf{b}, \mathrm{R}=\mathrm{PhCH}_{2} ; \mathbf{c}, \mathrm{R}=$ allyl

It has been reported that ethylenediamine on reaction with allylisothiocyanate furnishes a linear thiourea, which in turn is cyclized to a bisthiazoline [31]. The present work was also undertaken to examine the reactions of $\mathbf{9 a - c}$ with $\mathbf{1 0 a}, \mathbf{b}$. Thus, two equivalents of substituted N,N"-ethane-1,2-diylbis(thioureas) 9a-c reacted with $\mathbf{1 0 a}, \mathbf{b}$ in boiling tetrahydrofurane to afford substituted imino-1,3,6-thiadi-azepane-2-thiones 16a-c as minor (14-19 \%) and N -substi-
tuted trihalo-7-oxo-3,7-dihydroquinoxaline- 2 H -carbothioamides 14a-c/15a-c as major products (41-49 \%), in addition to the corresponding dihydrobenzoquinone derivatives. The structures of 14a-c and 15a-c were confirmed on the basis of elemental analyses, mass spectra, ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data. The ir spectra of $\mathbf{1 4 a}-\mathbf{c} / \mathbf{1 5 a}-\mathbf{c}$ showed characteristic absorption bands for the secondary-NH between 3330 and $3310 \mathrm{~cm}^{-1}$ and between $1690-1680 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{O}$ groups. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{1 4 a}$ shows the resonances of the methylene protons at C 3 and C 2 in the $\delta=3.46-3.60$ and $3.64-3.87 \mathrm{ppm}$ range, respectively. The presence of methylene groups is also evident from the ${ }^{13} \mathrm{C}$-DEPT-nmr spectrum, which exhibits negative signals at $\delta=48.8$ and 55.3 ppm . In addition, the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum exhibited a broad singlet centered at 9.69 ppm due to the NH -attached to phenyl and $\mathrm{C}=\mathrm{S}$ groups. The decoupled carbon spectrum of $\mathbf{1 4 a}$ showed signals at $\delta=170.2$ and 180.3 ppm , assigned to $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$, respectively $[30,32]$.

EXPERIMENTAL

Equipment: all the melting points were determined in open glass capillaries on a Gallenkamp melting point apparatus and are uncorrected. The ir spectra were recorded with a Shimadzu 408 or Bruker Vector 22 FT-IR spectrophotometers using potassium bromide pellets. A Bruker WM 300 spectrometer was used to determine ${ }^{1} \mathrm{H}-(300.13 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ - (75.47 MHz) nmr spectra. Assignment of carbon the resonances have been supported by DEPT experiments. Mass spectra were obtained with a Varian MAT 311 doubly focusing instrument using electron impact ionization (70 eV). Elemental analyses were determined at the Microanalytical Center, Cairo University, Egypt. uv/vis spectra were recorded on a Perkin-Elmer Lambda 2-spectrophotometer equipped with a thermostated cell. Preparative thin layer chromatography (plc) was carried out on 1 mm thick layers of silica gel slurry (Merck Pf_{254}) applied on 48 cm wide x 20 cm high glass plates using the solvents mentioned below. Zones were detected by quenching of fluorescence upon exposure to 254 nm light and the compounds were extracted from the plates with acetone.
Materials: Chloranil (2,3,5,6-Tetrachlorobenzo-1,4-quinone, 10a) and bromanil (2,3,5,6-tetrabromobenzo-1,4-quinone, 10b) were used as received from Aldrich. N, N^{\prime}-disubstituted hydrazine-1,2-carbothioamides 8a-c and substituted $N^{\prime}, N^{\prime \prime \prime}$ -ethane-1,2-diylbis[N-substituted(thioureas)] 9a-c were prepared according to the literature procedures [31,33-37].

Reactions of 8a-c with Chloranil (10a) and Bromanil (10b).
A solution of 8a-c (2.0 mmol) in anhydrous THF (20 mL) was added dropwise with stirring to a solution of chloranil (10a) or bromanil (10b) $(1.0 \mathrm{mmol})$ in the same solvent $(20 \mathrm{~mL})$. The colour of the reaction changed gradually from deep green to a blue colour. Stirring was continued for 48 hours with admission of air to complete the reaction. The reaction mixture was filtered and the blue precipitate was washed several times with cold THF and identified as the tetrahalothianthrenetetrones 13a,b. The filtrate was concentrated in vacuo and the residue separated by plc using cyclohexane/ethyl acetate ($2: 1$) mixture into three zones. The fastest moving zone contained the thiadiazoles 11a-c (in case of reaction with 10a and 10b),
the second zone, compounds 12a-c (isolated from the reaction with 10a) and the slowest migrating zone contained the dihydrobenzoquinones $\mathbf{1 0 a}-\mathrm{H}_{2}$ or $\mathbf{1 0 b}-\mathrm{H}_{2}$. The zones were extracted with acetone.
N, N-Diphenyl-[1,3,4]thiadiazole-2,5-diamine (11a).
This compound had $\mathrm{mp} 239-241^{\circ}$, yield ($80 \mathrm{mg}, 15 \%$ in case of $\mathbf{1 0 a}$ and $139 \mathrm{mg}, 26 \%$ in case of $\mathbf{1 0 b}$), colourless crystals from DMF (lit. [38] 240-243 ${ }^{\circ} \mathrm{C}$).
$N, N{ }^{\prime}$-Dibenzyl-[1,3,4]thiadiazole-2,5-diamine (11b).
This compound had mp $250-252^{\circ}$, yield ($71 \mathrm{mg}, 12 \%$ in case of $\mathbf{1 0 a}$ and $124 \mathrm{mg}, 21 \%$ in case of $\mathbf{1 0 b}$), colourless crystals from methanol (lit. [34] $251^{\circ} \mathrm{C}$).
N, N-Diallyl-[1,3,4]thiadiazole-2,5-diamine (11c).
This compound had mp 133-135 , yield ($55 \mathrm{mg}, 14 \%$ in case of $\mathbf{1 0 a}$ and $90 \mathrm{mg}, 23 \%$ in case of $\mathbf{1 0 b}$), colourless crystals from ethanol (lit. [36,37] $135^{\circ} \mathrm{C}$).

6,7-Dichloro-3-(phenylamino)-1H-benzo[e][1,3,4]thiadiazine-5,8-dione (12a).

This compound had mp 277-279 ${ }^{\circ}$, orange crystals from acetonitrile, yield 190 mg (28%); ir: 3330, $3270(\mathrm{NH}), 1680$ (C=O), 1620 (C=N), 1590 (Ar-C=C) cm ${ }^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 7.11-7.32(\mathrm{~m}, 5 \mathrm{H}$, Ph), 7.80 (br, s, 1H, thiadiazine-NH), 8.68 (br, s, 1H, NHPh); ${ }^{13} \mathrm{C}$ nmr: $\delta 125.1,128.6,129.3$ (Ph-CH), 142.4 (q-C), 127.0 (C-4a), 139.2, 141.2 (C-6,7), 152.2 (C-3), 155.6 (C-8a), 170.2, 171.4 (C5,8); EI-MS m/z: \% 341/339 (M+, 9), 303 (8), 267 (14), 132 (52), 104 (31), 91 (100), 77 (76), 65 (44).
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 45.90 ; \mathrm{H}, 2.07 ; \mathrm{Cl}$, 20.84; N, 12.35; S, 9.43. Found: C, 46.06; H, 1.93; Cl, 20.69; N, 12.48; S, 9.56.

3-(Benzylamino)-6,7-dichloro-1 H-benzo[$e][1,3,4]$ thiadiazine-5,8-dione (12b).

This compound had mp 291-293 , orange crystals from methanol, yield 177 mg (25%); ir: 3340, $3255(\mathrm{NH}), 1675(\mathrm{C}=\mathrm{O})$, $1630(\mathrm{C}=\mathrm{N}), 1585(\mathrm{Ar}-\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 4.64$ (br, $\mathrm{s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.06-7.24 (m, 5H, Ph), 7.70 (br, s, 1 H , thiadiazine- NH), 8.43 (br, s, $\left.1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 47.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 126.6$, 127.2, 128.4(Ph-CH), 141.4 (q-C), 127.2 (C-4a), 139.4, 141.1 (C6,7), 151.8 (C-3), 155.4 (C-8a), 170.0, 170.8 (C-5,8); EI-MS m/z: $\% 355 / 353\left(\mathrm{M}^{+}, 11\right), 317$ (5), 281 (8), 104 (27), 91 (83), 71 (100).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 47.47 ; \mathrm{H}, 2.56 ; \mathrm{Cl}$, 20.02; N, 11.86; S, 9.05. Found C, 47.31; H, 2.73; Cl, 19.88; N, 11.98; S, 8.93.

3-(Allylamino)-6,7-dichloro-1 H -benzo $e \mathrm{e}$ [1,3,4]thiadiazine-5,8dione (12c).

This compound had mp 189-199 , pale orange crystals from methanol, yield 134 mg (22%); ir: 3340, 3260 (NH), 2960, 2840 (Ali-CH), $1685(\mathrm{C}=\mathrm{O}), 1610(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 4.22(\mathrm{~m}, 2 \mathrm{H}$, allyl- $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 5.14-5.17\left(\mathrm{~m}, 2 \mathrm{H}\right.$, allyl $\left.-\mathrm{CH}_{2}=\right), 5.92-6.04(\mathrm{~m}, 1 \mathrm{H}$, allyl- $\mathrm{CH}=$), 7.54 (br, s, 1 H , allyl-NH), 7.86 (br, s, 1 H , thiadi-azine-NH); ${ }^{13} \mathrm{C}$ nmr: $\delta 43.7$ (allyl- $\mathrm{CH}_{2} \mathrm{~N}$), 115.1 (allyl- $\mathrm{CH}_{2}=$), 134.9 (allyl-CH=), 127.2 (C-4a), 139.2, 141.1 (C-6,7), 151.4 (C3), 154.8 (C-8a), 170.8, 171.5 (C-5,8); EI-MS m/z: \% 305/303 $\left(\mathrm{M}^{+}, 21\right), 267$ (14), 231 (9), 203 (11), 99 (100), 41 (61).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 39.49 ; \mathrm{H}, 2.32 ; \mathrm{Cl}$, 23.31; N, 13.82; S, 10.54. Found C, 39.35; H, 2.24; Cl, 23.51; N, 14.01; S, 10.34.

2,3,7,8-Tetrachlorothianthrene-1,4,6,9-tetrone (13a).

This compound had $\mathrm{mp} 342-344^{\circ}$, blue crystals from DMF, yield $170 \mathrm{mg}(41 \%)$ ir: $1695(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 143.5(\mathrm{C}-$ 2,3,7,8), 149.3 (C-4a,5a,9a,10a), 171.4 (C-1,4,6,9); EI-MS m/z: \% 416/412 ($\left.\mathrm{M}^{+}, 100\right), 398$ (39), 379 (12), 349 (16), 321 (19), 115 (55), 87 (91), 64 (36), 36 (69).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{Cl}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 34.81; $\mathrm{Cl}, 34.25 ; \mathrm{S}, 15.49$. Found C, 34.66; Cl, 34.41; S, 15.63.

2,3,7,8-Tetrabromothianthrene-1,4,6,9-tetrone (13b).
This compound had $\mathrm{mp}>360^{\circ}$, blue crystals from DMF, yield $260 \mathrm{mg}(44 \%)$; ir: $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 138.2$ (C2,3,7,8), 149.1 (C-4a,5a,9a,10a), 170.9 (C-1,4,6,9); EI-MS m/z: \% 594/590 (M+, 100), 512 (20), 496 (26), 416 (18), 260 (66), 188 (56), 142 (33), 116 (83), 60 (54).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{Br}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 24.35; $\mathrm{Br}, 54.00 ; \mathrm{S}, 10.84$; Found C, 24.51; Br, 53.86; S, 11.02.

Reactions of 9a-c with Chloranil (10a) and Bromanil (10b).
A solution of 9a-c (2.0 mmol) in anhydrous THF (15 mL) was added dropwise with stirring to a solution of $\mathbf{1 0 a}, \mathbf{b}(1.0 \mathrm{mmol})$ in anhydrous THF (20 mL). The mixture was heated under reflux for 5 hours, during which it turned from yellow into reddish orange. The mixture was concentrated under vacuum and the residue separated by plc using cyclohexane/ethyl acetate (3:1) as developing solvent to give numerous coloured zones, three of which (with the highest intensity) were extracted and removed. The fastest migrating one, which quenched all indicator fluorescence upon exposure to 254 nm UV-light, contained the thiadiazepanes 16a-c, the second zone (which was always characterized by an orange colour) contained the quinoxalines $\mathbf{1 4 a - c}$ and $\mathbf{1 5 a} \mathbf{- c}$, while the third zone contained the dihydrobenzoquinones $\mathbf{1 0 a}-\mathrm{H}_{2}$ and $\mathbf{1 0 b}-\mathrm{H}_{2}$.

5,6,8-Trichloro-7-oxo- N-phenyl-2,3-dihydroquinoxaline-1(7H)carbothioamide (14a).

This compound had mp 254-256 ${ }^{\circ}$, brown crystals from ethanol, yield 189 mg (49%); ir: $3325(\mathrm{NH})$, 2965 (Ali-CH), 1685 (C=O), 1590 ($\mathrm{Ar}-\mathrm{C}=\mathrm{C}$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 3.46-3.60(\mathrm{~m}, 2 \mathrm{H}$, quinoxaline-3$\left.\mathrm{H}_{2}\right), 3.64-3.87\left(\mathrm{~m}, 2 \mathrm{H}\right.$, quinoxaline-2- H_{2}), $7.08-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, 9.69 (br, s, $1 \mathrm{H}, \mathrm{NHPh}$); ${ }^{13} \mathrm{C}$ nmr: $\delta 48.8,55.3$ (quinoxaline-C-3,2), 120.1 (C-8), 124.8, 125.3, 128.9 (Ph-CH), 139.4 (q-C), 138.5, 141.3 (C-5,6), 151.1 (C-4b), 158.4 (C-4a), 170.2 (C-7), 180.3 (C=S); EI-MS m/z: \% 387/383 (M+, 36), 349 (11), 277 (8), 221 (21), 205 (9), 135 (57), 91 (100), 77 (81), 65 (64).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 46.59 ; \mathrm{H}, 2.61 ; \mathrm{Cl}$, 27.51; N, 10.87; S, 8.29. Found C, 46.68; H, 2.53; Cl, 27.38; N, 11.03; S, 8.44.
N-Benzyl-5,6,8-trichloro-7-oxo-2,3-dihydroquinoxaline-1(7H)carbothioamide (14b).

This compound had mp 269-271 ${ }^{\circ}$, brown crystals from acetonitrile, yield $188 \mathrm{mg}(47 \%)$; ir: $3320(\mathrm{NH}), 2960,2870$ (Ali$\mathrm{CH}), 1690(\mathrm{C}=\mathrm{O}), 1600(\mathrm{Ar}-\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}$: $\delta 3.50-3.61(\mathrm{~m}$, 2 H , quinoxaline-3- H_{2}), 3.70-3.85 ($\mathrm{m}, 2 \mathrm{H}$, quinoxaline-2 $-\mathrm{H}_{2}$), $4.60\left(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) 7.0-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 9.42(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NHCH}_{2} \mathrm{Ph}$); ${ }^{13} \mathrm{C}$ nmr: δ 48.7, 55.2 (quinoxaline-C-3,2), 50.2 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 119.8(\mathrm{C}-8), 126.5,127.1,129.0(\mathrm{Ph}-\mathrm{CH}), 140.1(\mathrm{q}-\mathrm{C})$, $138.4,141.2$ (C-5,6), 150.8 (C-4b), 158.8 (C-4a), 170.0 (C-7), 181.1 (C=S); EI-MS m/z: \% 400/397 (M+ 22), 363 (17), 263 (27), 235 (11), 149 (42), 91 (62), 77 (100), 65 (83).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OS}$: C, $47.96 ; \mathrm{H}, 3.02 ; \mathrm{Cl}$, 26.54; N, 10.49; S, 8.00. Found C, 48.12; H, 2.96; Cl, 26.39; N, 10.66; S, 7.86.
N-Allyl-5,6,8-trichloro-7-oxo-2,3-dihydroquinoxaline-1(7H)carbothioamide (14c).

This compound had mp 167-169${ }^{\circ}$, pale brown crystals from ethanol, yield $154 \mathrm{mg}(44 \%)$; ir: $3330(\mathrm{NH}), 2970,2890$ (Ali-CH), $1685(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 3.48-3.57\left(\mathrm{~m}, 2 \mathrm{H}\right.$, quinoxaline-3- $\left.\mathrm{H}_{2}\right)$, 3.68-3.86 (m, 2 H , quinoxaline-2- H_{2}), $4.22\left(\mathrm{~m}, 2 \mathrm{H}\right.$, allyl- $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, 5.17-5.20 (m, 2H, allyl- $\left.\mathrm{CH}_{2}=\right), 5.84-5.92(\mathrm{~m}, 1 \mathrm{H}$, allyl- $\mathrm{CH}=), 7.54$ (br, s, 1 H , allyl-NH); ${ }^{13} \mathrm{C}$ nmr: $\delta 43.6$ (allyl- $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 48.6,55.1$ (quinoxaline-C-3,2), 115.0 (allyl- $\mathrm{CH}_{2}=$), $119.9(\mathrm{C}-8), 134.8$ (allyl$\mathrm{CH}=), 138.6,141.1(\mathrm{C}-5,6), 151.1(\mathrm{C}-4 \mathrm{~b}), 158.6$ (C-4a), 170.1 (C7), $180.7(\mathrm{C}=\mathrm{S})$; EI-MS m/z: \% 351/347 (${ }^{+}$, 32), 313 (18), 277 (6), 241 (11), 185 (24), 99 (76), 41 (100), 36 (54).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 41.10 ; \mathrm{H}, 2.87 ; \mathrm{Cl}$, 30.33; N, 11.98; S, 9.14. Found C, 41.26; H, 2.69; Cl, 30.13; N, 12.11; S, 9.26.

5,6,8-Tribromo-7-oxo- N-phenyl-2,3-dihydroquinoxaline-1(7H)carbothioamide (15a).

This compound had mp 273-275 ${ }^{\circ}$, reddish-brown crystals from ethanol, yield 239 mg (46%); ir: $3310(\mathrm{NH}), 2960$ (Ali-CH), 1680 $(\mathrm{C}=\mathrm{O}), 1600(\mathrm{Ar}-\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 3.44-3.61(\mathrm{~m}, 2 \mathrm{H}$, quinox-aline-3- H_{2}), 3.66-3.85 (m, 2H, quinoxaline-2- H_{2}), 7.10-7.35 (m, $5 \mathrm{H}, \mathrm{Ph}$), 9.65 (br, s, 1H, NHPh); ${ }^{13} \mathrm{C}$ nmr: $\delta 48.8,55.1$ (quinoxa-line-C-3,2), 103.3 (C-8), 124.3, 125.2, 128.8 (Ph-CH), 139.4 (q-C), 127.7, 130.2 (C-5,6), 150.7 (C-4b), 158.4 (C-4a), 170.1 (C-7), $180.4(\mathrm{C}=\mathrm{S})$; EI-MS m/z: \% 519/515 ($\left.\mathrm{M}^{+}, 18\right), 489$ (12), 461 (14), 437 (21), 357 (18), 277 (12), 142 (38), 91 (67), 77 (83), 65 (100).

Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 34.64 ; \mathrm{H}, 1.94 ; \mathrm{Br}$, 46.10; N, 8.08; S, 6.17. Found C, 34.51; H, 2.12; Br, 45.93; N, 7.96; S, 6.29.
N-Benzyl-5,6,8-tribromo-7-oxo-2,3-dihydroquinoxaline-1(7H)carbothioamide (15b).

This compound had mp 282-284 ${ }^{\circ}$, reddish-brown crystals from acetonitrile, yield $219 \mathrm{mg}(41 \%)$; ir: $3330(\mathrm{NH}), 2965,2840$ (Ali$\mathrm{CH}), 1690(\mathrm{C}=\mathrm{O}), 1590(\mathrm{Ar}-\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 3.53-3.64(\mathrm{~m}$, 2 H , quinoxaline-3- H_{2}), 3.68-3.83 $\left(\mathrm{m}, 2 \mathrm{H}\right.$, quinoxaline-2- H_{2}), 4.64 (br, s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 6.98-7.28 (m, 5H, Ph), 9.45 (br, s, 1 H , $\mathrm{NHCH}_{2} \mathrm{Ph}$); EI-MS m/z: \% 533/529 ($\left.\mathrm{M}^{+}, 18\right), 503$ (11), 474 (6), 451 (27), 371 (18), 291 (16), 142 (36), 91 (100), 77 (67), 65 (43).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 35.98 ; \mathrm{H}, 2.26 ; \mathrm{Br}$, 44.88; N, 7.87; S, 6.00. Found C, 36.14; H, 2.18; Br, 45.08; N, 7.96; S, 5.87.
N-Allyl-5,6,8-tribromo-7-oxo-2,3-dihydroquinoxaline-1(7H)carbothioamide (15c).

This compound had mp 185-187 ${ }^{\circ}$, reddish brown crystals from ethanol, yield 208 mg (43 \%); ir: 3310 (NH), 2970, 2890 (Ali$\mathrm{CH}), 1685(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 3.46-3.58(\mathrm{~m}, 2 \mathrm{H}$, quinoxa-line-3- H_{2}), 3.62-3.78 (m, 2H, quinoxaline-2- H_{2}), $4.18(\mathrm{~m}, 2 \mathrm{H}$, allyl- $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 5.18-5.22\left(\mathrm{~m}, 2 \mathrm{H}\right.$, allyl $\left.-\mathrm{CH}_{2}=\right), 5.92-6.03(\mathrm{~m}, 1 \mathrm{H}$, allyl-CH=), 7.58 (br, s, 1H, allyl-NH); EI-MS m/z: \% 483/479 $\left(\mathrm{M}^{+}, 21\right), 401$ (16), 321 (11), 241 (6), 213 (17), 185 (32), 86 (53), 41 (100).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 29.78 ; \mathrm{H}, 2.08 ; \mathrm{Br}$, 49.53; N, 8.68; S, 6.63. Found C, 29.64; H, 1.96; Br, 49.68; N, 8.52; S, 6.47.

7-(Phenylimino)-1,3,6-thiadiazepane-2-thione (16a).

This compound had $\mathrm{mp} 233-237^{\circ}$, yield ($45 \mathrm{mg}, 19 \%$), colourless crystals from methanol (lit. [37] 235-237 ${ }^{\circ} \mathrm{C}$).

7-(Benzylimino)-1,3,6-thiadiazepane-2-thione (16b).
This compound had mp 130-132 , yield ($40 \mathrm{mg}, 16 \%$), colourless crystals from ethanol (lit. [37] 128-130 ${ }^{\circ} \mathrm{C}$).
7-(Allylimino)-1,3,6-thiadiazepane-2-thione (16c).
This compound had mp 100-101 , yield ($28 \mathrm{mg}, 14 \%$), colourless crystals from ethanol (lit. [37] 98-100 ${ }^{\circ} \mathrm{C}$).

Acknowledgements.
A. A. Hassan is indebted to the A. v. Humboldt-Foundation for the award of a fellowship from August 2003 to September 2003 and also for the donation of the Shimadzu 408 IR as well as Perkin-Elmer Lambda 2 Spectrophotometers.

REFERENCES AND NOTES

* Author to whom correspondence should be addressd, e-mail: alaahassan2001@yahoo.com.
[1] S. Patai and Z. Rappoport "The Chemistry of Quinonoid Compounds"; Wiley Interscience Publ.: New York, (1988), Vol. 2, part 1, pp. 552- 570.
[2] J. H. Billman, D. G.Thomas and D. K. Barnes, J. Am. Chem. Soc., 68, 2103 (1946).
[3] K. Kouno, C. Ogawa, Y. Shimoura, H. Yano and Y. Veda, Chem. Pharm. Bull., 29, 301 (1981).
[4] P. Ballesteros, R. M. Claramunt, C. Escolastico and M. D. Santa Maria, J. Org. Chem., 57, 1873 (1993).
[5] R. Foster, N. Kulevsky and D. S. Wanigasekera, J. Chem. Soc. Perkin Trans. 1, 1318 (1974).
[6] A. H. Khan and J. S. Driscoll, J. Med. Chem., 19, 313 (1976).
[7] F. Chan, A. H. Khan and J. S. Driscoll, J. Med. Chem., 19, 1302 (1976).
[8] A. A. Hassan, N. K. Mohamed, A. A. Aly and A. E. Mourad, Pharmazie, 52, 282 (1997).
[9] A. A. Hassan, N. K. Mohamed, Y. A.Ibrahim and A. E. Mourad, Liebigs Ann. Chem., 695 (1993).
[10] Y. A. Ibrahim, A. A. Hassan, N. K. Mohamed and A. E. Mourad, Arch. Pharm. (Weinheim), 325, 389 (1992).
[11] A. A. Hassan, N. K. Mohamed, A. A. Aly and A. E. Mourad, Bull. Soc. Chim. Belg., 105, 159 (1996).
[12] A. A. Hassan, N. K. Mohamed, A. A. Aly and A. E. Mourad, Pharmazie, 52, 23 (1997).
[13] A. A. Hassan, N. K. Mohamed, Y. A. Ibrahim, K. U. Sadek and A. E. Mourad, Bull. Chem. Soc. Jpn., 66, 2612 (1993).
[14] A. S. Hammam and B. E. Bayoumy, Collect. Czech. Chem. Commun., 50, 71 (1985).
[15] A. R. Katritzky and W. Q. Fan, J. Heterocyclic Chem., 25, 901 (1988).
[16] A. R. Katritzky, W. Q. Fan, Q. I. Linand and S. Bayyuk, J. Heterocyclic Chem., 26, 885 (1989).
[17] M. Matsuoka, A. Iwamoto, N. Furukawa and T. Kitao, J. Heterocyclic Chem., 28, 1445 (1991).
[18] M. Matsuoka, A. Iwamoto, N. Furukawa and T. Kitao, J. Heterocyclic Chem., 29, 439 (1992).
[19] M. Matsuoka and A. Iwamoto, J. Heterocyclic Chem., 30, 173 (1993).
[20] A. R. Katritzky and W. Q. Fan, J. Heterocyclic Chem., 30, 1679 (1993).
[21] M. Dobosz, and A. Pachuta-Stec, Acta Pol. Pharm., 53, 123 (1996).
[22] M. Dobosz, and A. Pachuta-Stec, Acta Pol. Pharm., 51, 457 (1994).
[23] L. Korzycka, M. Glowka and J. Janicka, Pol. J. Chem., 72, 73 (1998).
[24] H. W. Altland and P. A. Graham, J. Heterocyclic Chem., 15, 377 (1978).
[25] T. Okawara, Y. Tateyama, T. Yamasaki and M. Furukawa, J. Heterocyclic Chem., 25, 1071 (1988).
$[26]$ E. V. P. Tao, S. Rolski, Org. Prep. Proced Int., 18, 272 (1986).
[27] M. M. Suni, V. A. Nair and C. P. Joshua, Tetrahedron, 57, 2003 (2001).
[28] E. P. Invidiata, G. Furno, I. Lampronti and D. Simoni, J. Heterocyclic Chem., 34, 1255 (1997).
[29] H. O. Kalinowski, S. Berger, S. Braun, ${ }^{13} C-N M R$ Spectroscopy; Georg Thieme Verlag: Stuttgart, 1984.
[30] R. M. Silverstein, Spectrometric Identification of Organic Compounds; John Wiley and Sons, Inc.; New York, 1974.
[31] L. T. Mizrakh, L. Yu.Polanskaya, A. N. Gvozdetskii, A. M. Vosil'ev, T. M. Ivanova and N. I. Lisina, Khim-Farm Zn., 21, 322 (1987).
[32] J. Reiter and J. Barkôczy, J. Heterocyclic Chem., 30, 333 (1993).
[33] V. Kepe, F. Pozvàn, A. Golobič, S. Polanc and M. Koéevar, J. Chem. Soc. Perkin Trans. 1, 2813 (1998).
[34] E. Heinz and R. Berscheid, Sofw J., 120, 286 (1994); Chem. Abstr., 124, 55859w (1996).
[35] A. I. Simiti, N. Cosma and I. Proinov, Acad. Rep. Pop. Rom., Filiala Cluj, studii cercetavdri Chim., 8, 315 (1957).
[36] P. C. Guha, J. Am. Chem. Soc., 45, 1036 (1923).
[37] A. A. Hassan, A. E. Mourad, K. M. El-Shaieb, A. H. AbouZied and D. Döpp, J. Heteroatom Chem., 14, 535 (2003).
[38] W. Ried and R. Oxenius, Chem. Ber., 106, 484 (1973).

